SYNTHESIS AND PHOTOVOLTAIC PROPERTIES OF SYMMETRIC BIS-AZOMETHINES WITH ACCEPTOR SUBSTITUENTS IN THE 4,4'-POSITION

Author:

Ovdenko V.1,Vyshnevskyi D.1,Studzinsky S.1,Davidenko N.1

Affiliation:

1. Taras Shevchenko National University of Kyiv

Abstract

Two new symmetric azomethine dyes capable of photoinduced isomerization were synthesized by condensing symmetric bis-aldehyde (obtained by the reaction of epichlorohydrin with 4-oxybenzaldehyde) with 4-nitroaniline and 4-chloroaniline, respectively. The yield of the target products decreases with the transition from nitro-substituted azomethine to chlorine-substituted. This is due to the greater basicity of the starting amines with nitro-substitution when increasing the acceptor force of the substituent complicates the course of the reaction. Azomethines are characterized by absorption with a maximum at 400–410 nm, which makes them sensitive to radiation with a blue component of the spectrum. The photoelectric properties of azomethines upon irradiation were investigated by the method of measuring the surface potential with the help of a Kelvin dynamic probe. The maximum value of the electric potential of the photosensitive films free surface during irradiation with white LED at I = 60 W/m2 is about 270 mV in the case of azomethine with a nitro group in the 4,4' position and about 125 mV in the case of azomethine with chlorine as a substituent. That is, the magnitude of the electric potential of the free surface decreases approximately twice during the transition from nitro substituent to chlorine. This may be explained by the fact that the photoinduced changes in azomethine with a higher acceptor substituent flow more quickly and with greater efficiency. But at the same time, the reverse changes when turning off the light are just as fast. For chlorine substituted azomethine samples, the reverse process proceeds rather slowly, which may indicate greater stability over time of the photochemically modified form in case of chlorine substitution compared to the nitro-substituted analogue. Thus, the synthesized azomethines can be used in the development of new photovoltaic media and recording media for optical information recording.

Publisher

Taras Shevchenko National University of Kyiv

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3