MODIFIED ELECTRODE FOR NO3- DETERMINATION IN SALINE WATERS BY VOLTAMMETRY METHOD

Author:

Smyk N.1,Kopanytsa B.1

Affiliation:

1. Taras Shevchenko National University of Kyiv

Abstract

A certain level of NO3- in water is necessary for the growth of algae. Most aquatic organisms can survive at relatively high nitrate levels, but concentrations higher than 0.2 mg/l cause fish diseases, eutrophication and algal bloom in aquariums. Thus, it is necessary to monitor the level of nitrates in aquarium water. When choosing the method of nitrate level analysis that will be used to develop an in-site saltwater monitor system, we should take into account several key factors, such as the threshold concentration and possible inferences, including high levels of Cl- in saltwater. Other desired criteria for the method are the need to get results in real time, low cost of production, and a way to perform the measurements in-site without the need for highly skilled personnel. The voltammetry was chosen as a method that satisfies our criteria. It is known that nitrate can be reduced quantitatively on a copper electrode. However, the copper electrode becomes poisoned after only a few minutes of use. Previous studies showed that a thin layer of copper deposited on the surface of various commonly used electrodes significantly improve the perfomance of the sensing system. This paper describes the fabrication process of voltammetric sensor and shows the advantage of using a glassy carbon electrode modified with electrodeposited copper layer to measure the concentration of nitrate in sea water. We have found that the modified sensor can be effectively used to catalyze nitrate reduction with a welldefined reduction wave with E= -1.1 V. We performed the cyclic voltammetric (CV) experiments and chose an optimal supporting electrolyte and the optimal conditions for the pretreatment. It was found that the peak current of nitrate increases with the increase of Cl- concentration and is stable in the range (2–3)⋅10-1 mol/l. The pH value from 3.5 to 6.0 does not influence the reaction on an electrode. The developed sensor was used to direct determine of nitrate in artificial seawater without of any sample preparation. Potentiometry with standard proсedure of Cl- precipitation was used to validate all the results. The values obtained by both methods were in good agreement with each other.

Publisher

Taras Shevchenko National University of Kyiv

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference33 articles.

1. Moorcroft M. J., Davis J., Compton R. G. Talanta. 2001. 54. 785–803.

2. Alahi Md. E. E., Mukhopadhyay S. C. Sens. Actuators, A. 2018. 280. 210–221.

3. Michalski R., KurzycaI I. Pol. J. Environ. Stud. 2006. 15(1). 5–18.

4. Betta F. D., Vitali L., Fet R., Oliveira Costa A. C. Talanta. 2014. 122. 23–29.

5. Paczosa-Bator B., Cabaj L., Raś M., Baś B., Piech R. Int. J. Electrochem. Sci. 2014. 9. 2816–2823.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3