Hubble parameter and the potential of the cosmological scalar field

Author:

Zhdanov V.1,Alexandrov A.1,Stashko O.1

Affiliation:

1. Taras Shevchenko National University of Kyiv

Abstract

We consider a homogeneous isotropic Universe filled with cold matter (with zero pressure) and dynamic dark energy in a form of a scalar field. For known scalar field potential V(φ), the Friedmann equations are reduced to a system of the first order equation for the Hubble parameter H(z) and the second order equation for the scalar field as functions of the redshift z. On the other hand, knowledge of H(z) allows us to get the scalar field potential in a parametric form for a known cold matter content and three dimensional curvature parameter. We analyze when the accepted model mimics the dependence H(z) derived in the framework of the other models, e.g., hydrodynamic ones. Two examples of this mimicry are considered. The first one deals with the case when H2(z)~ Ωm(1+z)3+ΩΛ, but Ωm parameter overestimates the input of the cold matter (dark matter+baryons). The resulting scalar field potential is V(φ)=a+bsinh2(cφ), where the constants a,b,c depend on the Ω – parameters of the problem. In the other example we assume that some part of the dark matter has a non-zero equation of state p=wε, -1<w<1. In this case H2(z)~ Ωdm1(1+z)3(1+w)+ Ωb+Ωdm2)(1+z)3+ΩΛ. The corresponding potentials are defined for positive values of φ. For both signs of w potential V(φ) is a monotonically increasing function with typically an asymptotically exponential behavior; though for some choice of parameters we may have a singularity of V(φ)on a finite interval. Then we consider fitting of the potential for w from the interval [-0.2,0.2] for three different values of Ωdm2 by means of a simple formula Vfit(φ)=p0+p1exp(p2 φ). The dependencies pi(w) are presented and the approximation error is estimated.

Publisher

Taras Shevchenko National University of Kyiv

Subject

General Medicine

Reference14 articles.

1. Горбунов Д. С. Введение в теорию горячей Вселенной / Д. С. Горбунов, В. А. Рубаков. – М. : ИЯИ РАН, 2007.

2. Жданов В. І. Вступ до теорії відносності / В. І. Жданов. – К. : ВПЦ "Київський університет", 2008.

3. Общая теория относительности: признание временем / А. Н. Александров, И. Б. Вавилова, В. И. Жданов и др. – К. : Наук. думка, 2015.

4. Caldwell R. R. Cosmological Imprint of an Energy Component with General Equation-of-State / R. R. Caldwell, R. Dave, P. J. Steinhardt // Phys. Rev. Lett. – 1998. – Vol. 80. – P. 1582–1585.

5. Zlatev I. Quintessence, Cosmic Coincidence, and the Cosmological Constant / І. Zlatev, L. M. Wang, P. J. Steinhardt // Phys. Rev. Lett. – 1999. – Vol. 82. – P. 896–899.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modifications of the standard cosmological model and “new physics”;Bulletin of Taras Shevchenko National University of Kyiv. Astronomy;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3