VISCOUS FLUID FLOW MODELING WITH THE LATTICE BOLTZMANN METHOD ON GRAPHICS PROCESSORS USING WebGL API

Author:

Dovgiy S. O.1,Ostapenko A. O.2,Bulanchuk G. G.2

Affiliation:

1. Institute of Telecommunication and Global Information Space

2. Pryazovskyi State Technical University

Abstract

This work is dedicated to the modeling methodology of a viscous fluid flows with the lattice Boltzmann method on graphic processors based on the technology of images rendering in web browsers WebGL. A two-dimensional nine-velocity LBM model (D2Q9) with a collision integral in a Bhatnagar-Gross-Kruk approximation form is shown. The possibilities of calculation acceleration using WebGL technology is described, namely features of using textures to contain values of some physical quantities in numerical algorithms and using fremebuffers to storage the textures, influence of the texture parameters on the numerical algorithms, features of shaders programming. The questions of shader programs using for carrying out stages of physical modeling were considered. The proposed methodology was used to develop an original web program for modeling of classical test problems. Simulations of the Poiseuille flow in a plane channel and the flow around a circular cylinder in a plane channel were performed. The obtained results were compared with the results of calculations performed in the original verified modeling program based on the lattice Boltzmann method and in the Comsol Multiphysics package with the finite element method. Comparisons of the values of the velocity magnitude showed the consistency of the obtained results with the data of other numerical experiments. The analysis of computational speed in comparison with modeling using the optimized algorithm of a method with use of the technology of parallel calculations on CPU OpenMP in the original program is carried out. It is shown that the acceleration of calculations depends on the number of cells of the calculation grid. The results of the fluid flow modeling around a circular cylinder at Re = 1000 are demonstrated, which are obtained 30 times faster than with the calculations obtained with optimized lattice Boltzmann method and OpenMP technology.

Publisher

Taras Shevchenko National University of Kyiv

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3