Author:
Khusainov D. Ya., ,A. V. Shatyrko A. V.,Hahurin Z. R., ,
Abstract
The paper considers the task of optimal stabilization for linear stationary differential equations. Usage of Lyapunov functions for optimal stabilization. We prove the theorem about optimal stabilization and determine the expression of optimal control for considered class of tasks.
Publisher
Taras Shevchenko National University of Kyiv
Reference6 articles.
1. 1. Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. Mathematical theory of optimal processes. Moscow: Nauka, 1983. 392 p.
2. 2. Alekseev V. M., Tikhomirov V. M., Fomin S. V. Optimal control. Moscow: Nauka, 1979. 432 p.
3. 3. Malkin I. G. Theory of motion stability. Moscow: Nauka, 1966. 530 p.
4. 4. Onishchenko S. M. Rigid optimal stabilization and observation nonlinear systems under uncertain conditions. Part 1. Kiev, Alfa Reklama, 2017, 352 p.
5. 5. Demchenko H., Diblik J., Khusainov D. Ya. Optimal stabilization for differential systems with delays - Malkin's approach. Journal of the Franklin Institute. 2019. Vol. 356. P. 4811-4841.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. OPTIMAL STABILIZATION IN DIFFERENCE EQUATIONS;Journal of Numerical and Applied Mathematics;2024