EQUALITY OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF TRIDIAGONAL BISYMMETRIC COVARIANCE MATRIX

Author:

Savkina Marta,

Abstract

At the paper a linear regression model whose function has the form f(x) = ax + b, a and b — unknown parameters, is studied. Approximate values (observations) of functions f(x) are registered at equidistant points of a line segment. It is also assumed that the covariance matrix of deviations is a tridiagonal bisymmetric matrix. In the theorem proved in the paper, in the case of an odd number of observation points, a necessary and sufficient condition for the elements of this covariance matrix is found, which ensures the equality of the LS estimate and the Aitken estimate of the a parameter of this model. With this type of covariance matrix of deviations, the estimates of Aitken and LS of parameter b will not coincide.

Publisher

Taras Shevchenko National University of Kyiv

Reference6 articles.

1. 1. Demidenko E. Z. Linear and nonlinear regression. Moscow: Finance and Statistics, 1981. 304 p. (in Russian)

2. 2. Anderson T. The statistical analysis of time series. Moscow: Mir, 1976. 756 p. (in Russian)

3. 3. Savkina M. Conditions for the coincidence of the LS and Aitken estimations of the parameters of the linear regression model. Journal of Numerical and Applied Mathematics. 2018. No. 3 (129). P. 36-44. (in Ukrainian)

4. 4. Savkina M. Yu. Equality of least squares method and Aitken senior coefficient estimates of the linear regression model in the case of correlated deviations. Journal of Numerical and Applied Mathematics. 2021. No. 2 (136). P. 64-72. https://doi.org/10.17721/2706-9699.2021.2.06

5. 5. Savkina M. The necessary condition for the coincidence of LS and Aitken estimates of the senior coefficient of the linear regression model in the case of correlated deviations. Journal of Numerical and Applied Mathematics. 2022. No 2. С. 116-125. https://doi.org/10.17721/2706-9699.2022.2.14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3