On asymptotic distribution of Koenker-Bassett estimator of the parameter of linear regression model with strongly dependent noise

Author:

Ivanov O.1,Kaptur N.1,Savych I.1

Affiliation:

1. National Technical University of Ukraine ”Igor Sikorsry Kyiv Polytechnic Institute“

Abstract

Asymptotic properties of Koenker - Bassett estimators of linear regression model parameters with discrete observation time and random noise being nonlinear local transformation of Gaussian stationary time series with singular spectrum are studied. The goal of the work lies in obtaining the requirements to regression function and time series that simulates the random noise, under which the Koenker - Bassett estimators of regression model parameters are asymptotically normal. Linear regression model with discrete observation time and bounded open convex parametric set is the object of the studying. Asymptotic normality of unknown parameters Koenker - Bassett estimators are obtained. For getting these results complicated concepts of time series theory and time series statistics have been used, namely: local transformation of Gaussian stationary time series, stationary time series with singular spectral density, spectral measure of regression function, admissibility of singular spectral density of stationary time series in relation to this measure, expansions by Chebyshev - Hermite polynomials of the transformed Gaussian time series values and it‘s covariances, central limit theorem for weighted sums of the values of such a local transformation.

Publisher

Taras Shevchenko National University of Kyiv

Subject

Medical Assisting and Transcription,Medical Terminology

Reference18 articles.

1. BERAN, J. (2013) Long-memory Processes. Probabilistic Properties and Statistical Methods.Springer-Verlag Berlin Heidelberg. – 884 p.

2. BASSETT, G. (1978) Regression quantile. Econometrica.–Vol. 46. –P. 33-50.

3. KOENKER, R (2005) Quantile Regression. Cambridge University Press. – 349 p.

4. SAVYCH, I.N. (2017) Asymptotic properties of Koenker-Bassett estimator of parametrs of nonlinear regression with strongly dependent random noise. Diss. of Cand. Phys.-Math. Sciences, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv. – 144 p.

5. TARASENKO, P. F., ZHURAVLEV, A.V. (2005) Estimation of the parameters of the nonlinear quantile regression model by the sign method. Tomsk state University, OPITNTS.–P. 258-266. – Access mode: http://elib.bsu.by/bitstream/123456789/54927/1/39.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3