Characteristic Cauchy’s problem with prehistory in the case of nonlinear differential equations in partial derivatives

Author:

Kohutych O. I.1ORCID,Marynets V. V.1

Affiliation:

1. Uzhhorod National University

Abstract

We have built a constructive method of investigation and approximate solution for nonlinear Gursa’s problem with prehistory. We have established sufficient condition of subsistence, existence of unity and constant signs solution of the investigated problem. At mathematical description to different nature process (gas sorption, the spread of moisture in the porous substances, pipes heating by a stream of hot water, drying by the airflow, etc. [1]) we often come to boundary value problems for nonlinear differential equations in partial derivatives, when not all output data are known, that is some of them need to be found from auxiliary nonlinear problems, which are mathematical models of processes that proceeded the research. These problems should be named as problems with prehistory. One approach to investigation and approximate solution to such a problem has been proposed in the current paper.

Publisher

Taras Shevchenko National University of Kyiv

Subject

Medical Assisting and Transcription,Medical Terminology

Reference7 articles.

1. PERESTIUK, M. and MARYNETS, V. (2017) Teoriia rivnian matematychnoi fizyky. K: VPTs "Kyivskyi universytet".

2. COLLATZ, L. (1964) Funktionalanalysis und numerische Mathematik. Berlin-Gottingen-Heidelberg: Springer-Verlag.

3. MARYNETS, V. & KOHUTYCH, О. (2019) Pro odyn pidkhid doslidzhennia kraiovoi zadachi dlia kvaziliniinoho rivniannia hiperbolichnoho typu iz rozryvnoiu pravoiu chastynoiu. Matematychne ta kompiuterne modeliuvannia. Seriia: Fizyko-matematychni nauky. Zbirnyk naukovykh prats. 19. p. 71-77.

4. MARYNETS, V. & MARYNETS, K. (2013) On Goursat-Darboux boundary value problem for systems of nonlinear differential equations of hyperbolic type. Miskolc Mathematical Notes. 14(3). p. 1009-1020.

5. MARYNETS, V., MARYNETS, K. and PYTOVKA, O. (2019) Analitychni metody doslidzhennia kraiovykh zadach. Uzhhorod: Vydavnytstvo UzhNU "Hoverla".

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3