Abstract
Axisymmetric dynamic problem of thermomechanical loading of a steel cylinder is considered. Volume strain caused by the microstructural transformations of the martensitic type under cooling solids as well as into consideration and dependence inelastic characteristics of material for multiphase state are taken. The thermomechanical nonlinear behavior of an isotropic material is described by unified flow model generalized for the case of multiphase material state. The problem is solved numerically by the implicit step-by-step time integration method, by the iterative method and by the finite element method. The investigation of the stress-strain state of an inelastic material with regard for the dependence of parameters of the flow model on the phase composition of a material is carried out by using of numerical simulation. We established that microstructural transformations significantly reduce residual inelastic strain and promote the appearance of compressive stresses. The results obtained in the work can be used in calculations of parameters of surface hardening technologies.
Publisher
Taras Shevchenko National University of Kyiv