Exploring spatial association between residential and commercial urban spaces: A machine learning approach using taxi trajectory data

Author:

Zhou Lei,Xiao Weiye,Wang Chen,Wang Haoran

Abstract

Human mobility datasets, such as traffic flow data, reveal the connections between urban spaces. A novel framework is proposed to explore the spatial association between urban commercial and residential spaces via consumption travel flows in Shanghai. A social network analysis and a community detection method are employed using taxi trajectory data during the daytime to validate the framework. The machine learning-based approach, such as the community detection method, can overcome the limitation regarding spatial uncertainty and spatial effects. The empirical findings suggest that people's commercial activities are sensitive to the power of accessible commercial centers and travel distances. The high-level commercial centers would contribute to the monocentric structure in the outer urban region based on consumption flows. In the central urban region, increasing the number of high-level commercial centers and making the powers of commercial centers hierarchical can contribute to a polycentric mobility pattern of people's consumption. This research contributes to the literature by providing a novel framework to model, analyze and visualize people's mobility based on the trajectory big data, which is promising in future urban research.

Publisher

Center for Transportation Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3