Modeling airbursts by comets, asteroids, and nuclear detonations: shock metamorphism, meltglass, and microspherules

Author:

West AllenORCID,Young Marc,Costa Luis,Kennett James P.,Moore Christopher R.ORCID,LeCompte Malcolm A.ORCID,Kletetschka GuntherORCID,Hermes Robert E.

Abstract

Asteroid and comet impacts can produce a wide range of effects, varying from large crater-forming events to high-altitude, non-destructive airbursts. Numerous studies have used computer hydrocode to model airbursts, primarily focusing on high-altitude events with limited surface effects. Few have modeled so-called “touch-down” events when an airburst occurs at an altitude of less than ∼1000 m, and no known studies have simultaneously modeled changes in airburst pressures, temperatures, shockwave speeds, visible materials, and bulk material failure for such events. This study used the hydrocode software Autodyn-2D to investigate these interrelated variables. Four airburst scenarios are modeled: the Trinity nuclear airburst in New Mexico (1945), an 80-m asteroid, a 100-m comet, and a 140-m comet. Our investigation reveals that touch-down airbursts can demolish buildings and cause extensive ground-surface damage. The modeling also indicates that contrary to prevailing views, low-altitude touch-down airbursts can produce shock metamorphism when the airburst shockwave or fragments strike Earth’s surface at sufficiently high velocities, pressures, and temperatures. These conditions can also produce microspherules, meltglass, and shallow impact craters. Regardless of modeling uncertainties, it is known that bolides can burst just above the Earth’s surface, causing significant damage that is detectable in the geologic record. These results have important implications for using shocked quartz and melted materials to identify past touch-down airbursts in the absence of a typical impact crater. Although relatively rare, touch-down events are more common than large crater-forming events and are potentially more dangerous.

Publisher

ScienceOpen

Reference148 articles.

1. Airburst Modeling;M Boslough,2015

2. Airburst Modeling;M Boslough,2021

3. The Identification of Airbursts in the Past: Insights from the BIT-58 Layer;M Van Ginneken;Earth Planet. Sci. Lett.,2024

4. Low-Altitude Airbursts and the Impact Threat;M Boslough;Int. J. Impact. Eng.,2008

5. Low-Altitude Airbursts and the Impact Threat - Final LDRD Report.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3