An Optimization Model for Preliminary Stability and Configuration Analyses of Semi-submersibles

Author:

Gosain G D,Sharma R,Kim Tae-wan

Abstract

In the modern era of design governed by economics and efficiency, the preliminary design of a semi-submersible is critically important because in an evolutionary design environment new designs evolve from the basic preliminary designs and the basic dimensions and configurations affect almost all the parameters related to the economics and efficiency (e.g. hydrodynamic response, stability, deck load and structural steel weight of the structure, etc.). The present paper is focused on exploring an optimum design method that aims not only at optimum motion characteristics but also optimum stability, manufacturing and operational efficiency. Our proposed method determines the most preferable optimum principal dimensions of a semi-submersible that satisfies the desired requirements for motion performance and stability at the preliminary stage of design. Our proposed design approach interlinks the mathematical design model with the global optimization techniques and this paper presents the preliminary design approach, the mathematical model of optimization. Finally, a real world design example of a semi-submersible is presented to show the applicability and efficiency of the proposed design optimization model at the preliminary stage of design.

Publisher

Royal Institution of Naval Architects

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3