The Sophistication of Early Stage Design for Complex Vessels

Author:

Andrews D

Abstract

Prior to the introduction of computers into Early Stage Ship Design of complex vessels, such as naval ships, the approach to synthesising a new design had been via weight equations. When it was realised that modern naval vessels (and some sophisticated service vessels) were essentially space driven initial (numerical) sizing needed to balance weight and space, together with simple checks on resistance & powering, plus sufficient intact stability (i.e. simple metacentric height assurance). All this was quickly computerised and subsequently put on a spread-sheet to iteratively achieve weight and space balance, while meeting those simple stability and R&P checks. Thus suddenly it became possible to produce very many variants, for both trade-off of certain requirements (against initial acquisition cost) as well (apparently) optimal solutions. However as this paper argues this speeding up of a very crude synthesis approach, before rapidly proceeding into feasibility investigations of the “selected design”, has not led to a quicker overall design process, nor have new ship designs been brought earlier into service, in timeframes remotely comparable to most merchant ships. It is the argument of this paper that such a speeding up of an essentially simplified approach to design synthesis is not sensible. Firstly, there is the need to conduct a more sophisticated approach in order to proceed in a less risky manner into the main design process for such complex vessels. Secondly, further advances in computer techniques, particularly those that CAD has adopted from computer graphics advances, now enable ship concept designers to synthesise more comprehensively and thereby address from the start many more of the likely design drivers. The paper addresses the argument for a more sophisticated approach to ESSD by first expanding on the above outline, before considering important design related issues that are considered to have arisen from major R.N. warship programmes over the last half century. This has been done by highlighting those UK naval vessel designs with which the author has had a notable involvement. The next section re-iterates an assertion that the concept phase (for complex vessels) is unlike the rest of ship design with a distinctly different primary purpose. This enables the structure of a properly organised concept phase to be outlined. Following this the issue of the extent of novelty in the design of a new design option is spelt out in more detail for the seven categories already identified. The next section consists of outlining the architecturally driven approach to ship synthesis with two sets of design examples, produced by the author’s team at UCL. All this then enables a generalised concept design process for complex vessels to be outlined, before more unconventional vessels than the naval combatant are briefly considered. The concluding main section addresses how a range of new techniques might further alter the way in which ESSD is addressed, in order to provide an even better output from concept to accomplish the downstream design and build process. The paper ends with a summary of the main conclusions.

Publisher

Royal Institution of Naval Architects

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3