Neural networks application in managing the energy efficiency of industrial enterprise

Author:

Klepikova Svitlana1ORCID

Affiliation:

1. Senior Instructor of Department of International Business and Finance National Technical University “Kharkiv Polytechnic Institute”

Abstract

The article is devoted to the creation of a method for using of neural networks approach in solving problems of energy efficiency management at the industrial enterprise. The method allows to obtain an approximate expected value of the energy intensity of production, depending on the values of the main factors affecting it. The multilayer perceptron was chosen as the type of neural network, synthesis of which was carried out by using the genetic algorithm. When sampling for the synthesis of a neural network, we used the results that were obtained by means of a priori ranking, correlation and regression analysis based on the statistical data of industrial enterprises in machine-building profile. The recommendations of the use of the method and the application of its results in the practical implementation at the industrial enterprise are given. Calculations based on the aforementioned method ensured a high precision of prediction of energy intensity values for industrial enterprises that were included in the sample during the synthesis of the neural network, and an acceptable error while testing on industrial enterprises from a test sample.

Publisher

Kyiv National Economic University named after Vadym Hetman

Subject

General Medicine

Reference19 articles.

1. Cabinet of Ministers of Ukraine (2017). Енергетична стратегія України на період до 2035 року «Безпека, енергоефективність, конкурентоспроможність» [Energetychna strategiya Ukrainy na period do 2035 roku «Bezpeka, energoefektyvnist’, konkurentospromozhnist’»]. - http://zakon5.rada.gov.ua/laws/show/605-2017-%D1%80

2. СТАЛИЙ РОЗВИТОК ЕНЕРГЕТИКИ УКРАЇНИ У СВІТОВИХ ВИМІРАХ

3. Dzhedzhula, V. V. (2014). Енергозбереження промислових підприємств: методологія формування, механізм управління [Enerhozberezhennia promyslovykh pidpryiemstv: metodolohiya formuvannia, mekhanizm upravlinnia] (346 p.). Vinnytsia: VNTU.

4. Ezhov, A. A., & Shumskiy, S. A. (1998). Нейрокомпьютинг и его применения в экономике и бизнесе [Neirokompiutingh i eho prymeneniya v ekonomike i biznese] (222 p.). Moscow: MIFI. - https://docs.google.com/file/d/0B7zVAgSBB3MeaWVZemVfcW1IN28/edit

5. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal aproximators. Neural networks, 2, 359-366.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3