Prediction of financial strength ratings using machine learning and conventional techniques

Author:

A. Abdou Hussein1ORCID,M. Abdallah Wael2,Mulkeen James3,G. Ntim Collins4ORCID,Wang Yan5

Affiliation:

1. Ph.D., Professor of Banking & Finance; Department of Accounting, Finance and Banking, Faculty of Business and Law, Manchester Metropolitan University, Manchester, UK; and Management Department, Faculty of Commerce, Mansoura University, Mansoura, Egypt

2. Ph.D., Assistant Professor of Finance, Department of Finance, Misr International University, Cairo

3. Ph.D., Reader in Leadership & Management, Saloford Business School, University of Salford

4. Ph.D., Professor of Accounting, Department of Accounting, School of Management, University of Southampton

5. Ph.D., Senior Lecturer in Accounting and Finance, Department of Accounting and Finance, Faculty of Business & Law, De Montfort University

Abstract

Financial strength ratings (FSRs) have become more significant particularly since the recent financial crisis of 2007–2009 where rating agencies failed to forecast defaults and the downgrade of some banks. The aim of this paper is to predict Capital Intelligence banks’ financial strength ratings (FSRs) group membership using machine learning and conventional techniques. Here the authors use five different statistical techniques, namely CHAID, CART, multilayer-perceptron neural networks, discriminant analysis and logistic regression. They also use three different evaluation criteria namely average correct classification rate, misclassification cost and gains charts. The data are collected from Bankscope database for the Middle Eastern commercial banks by reference to the first decade of the 21st century. The findings show that when predicting bank FSRs during the period 2007–2009, discriminant analysis is surprisingly superior to all other techniques used in this paper. When only machine learning techniques are used, CHAID outperform other techniques. In addition, the findings highlight that when a random sample is used to predict bank FSRs, CART outperform all other techniques. The evaluation criteria have confirmed the findings and both CART and discriminant analysis are superior to other techniques in predicting bank FSRs. This has implications for Middle Eastern banks, as the authors would suggest that improving their bank FSR can improve their presence in the market.

Publisher

LLC CPC Business Perspectives

Subject

Strategy and Management,Economics and Econometrics,Finance,Business and International Management

Reference38 articles.

1. Abdallah, W. M. (2013). The impact of Financial and Non-Financial mesures on Banks’ Financial Strength Ratings: The Case of the Middle East (Ph.D. Thesis, Salford University, UK).

2. An evaluation of alternative scoring models in private banking

3. Genetic programming for credit scoring: The case of Egyptian public sector banks

4. Neural nets versus conventional techniques in credit scoring in Egyptian banking

5. Predicting creditworthiness in retail banking with limited scoring data

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3