Defects formation on the surface of Si-substrates during thermal sputtering of gold

Author:

Kukurudziak M. S.1,Kukurudziak A. M.2

Affiliation:

1. Rhythm Optoelectronics Shareholding Company

2. Yuriy Fedkovych Chernivtsi National University

Abstract

Silicon photodetectors, in particular p–i–n photodiodes, are widely used as sensors of optical radiation. With technological advances, the requirements for the parameters and reliability of these elements of solid-state electronics are increasing sharply, thus improving these characteristics is an important task. During the production of silicon photosensors, parameters were observed to degrade after the stage of forming contact pads by thermal sputtering of chrome-gold. Examination of the samples in the selective etchant allowed discovering the complexes of structural defects, which contributed to the deterioration of the parameters, in particular, the growth of dark currents. When investigating the causes of the appearance of these defects, it was established that they were formed as a result of local melting of silicon when gold “drops” hit it with a temperature higher than the melting temperature of silicon due to boiling in the evaporator. It was established that the use of wire is accompanied by a more intensive appearance of gold drops than when using beads. It was also noticed that the roughness of the morphology in the case of sputtering from a wire is significantly higher than in the case of sputtering from beads. It is noted that after the metallization is formed, photolithography is performed on the front side of the substrates to form contact pads, and considering the possibility of etching due to the presence of gold thickenings, it is better to spray on the front side from crowns. Wire spraying should be used for the reverse side of substrates, where defect formation is less critical. The formation of the described defects can be minimized by using spraying from closed evaporators or by increasing the time of spraying on the shutter during gold melting.

Publisher

Private Enterprise, Politehperiodika

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3