Detection of outliers in processing of small size data

Author:

Popukaylo V. S.1

Affiliation:

1. Taras Shevchenko Transnistria State University

Abstract

This article describes the criteria for detection of outliers power depending on a small size sample. Removing outliers is one of the stages of signals pre-processing. Statistical experiment, in which using a random number generator were received arrays of data, containing several thousand samples with normal distribution, with the given mean averages and standard deviation for each n-value, was conducted to solve this problem. Thus, we researched and vividly illustrated the possibility of Grubbs, Dixon, Tietjen—Moore, Irving, Chauvenet, Lvovsky and Romanovsky criteria at studied data sizes from 5 to 20 meterages. Conclusions about the applicability of each criterion for the outliersdetection in processing of small size data were made. Lvovsky criterion was recognized the optimal criterion. Dixon’s criterion was recommended for n £ 10. Irwin’s criterion was recommended when n ³ 10. Tietjen—Moore’scriterion can be recommended for the detection of outliers in small samples for n > 5, since it recognizes errors well in the values of a x-+4s and has the least amount of I type mistakes. Grubb’s with an unknown standard deviation may be used in samples for n ³ 15. Chauvenet and Romanovsky criteria cannot be recommended for the detection of outliers in small size data.

Publisher

Private Enterprise, Politehperiodika

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3