1. 1) OpenAI : New GPT-3 capabilities: edit & insert. https://openai.com/blog/gpt-3-edit-insert (Accessed on 31 May 2023)
2. 2) Pratt, L. Y. : Discriminability-based transfer between neural networks. Proc. of the Adv. in NIPS 5, Denver, Colorado, USA, Nov. 30-Dec. 3, 1992.
3. 3) 皆川裕樹,安瀬地一作,木村匡臣,奥村直人,木村延明,馬場大地:排水施設の操作支援のための深層学習水位予測モデル構築にむけた模擬データ活用法の検討,土木学会論文集B1(水工学),76巻2号,pp. I_349-I_354,2020.[Minakawa, H., Azechi, I., Kimura, M., Okumura, N., Kimura, N. and Baba, D. : Utilization of simulated data fro development of a deep learning flood prediction model as support of drainage pump operation. J. JSCE Ser. B1 (Hydraul. Eng.), Vol. 76, Issue 2, pp. I_349–I_354, 2020.]
4. 4) 一言正之,荒木健,箱石健太,遠藤優斗:深層学習を用いたダム流入予測における学習データ拡張の適用性検証,土木学会論文集 B1(水工学),78巻 2号,pp. I_175-I_180,2022.[Hitokoto, M., Araki, T., Hakoishi, K. and Endo, Y. : Evaluation of applicability of data augmentation method for sam inflow prediction using deep learning, J. JSCE Ser. B1 (Hydraul. Eng.), Vol. 78, Issue 2, pp. I_175-I_180, 2022.]
5. 5) Kimura, N., Yoshinaga, I., Sekijima, K., Azechi, I. and Baba, D. : Convolutional neural network coupled with a transfer-learning approach for time-series flood predictions, Water, Vol. 12, Issue 1, 96, 2020.