Inhibitive Effect of Organic Inhibitors on the Corrosion of Mild Steel in Acidic Medium

Author:

Singaravelu P.ORCID,Bhadusha N.ORCID,Dharmalingam VORCID

Abstract

The aim of the present work was to study the corrosion inhibition of mild steel using organic inhibitors. The corrosion inhibition activity of a newly synthesized [4-(4-aminobenzoyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-ABPFM) and [4-(4- aminophenyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-APFM) was investigated on the corrosion of mild steel in 1N HCl at room temperature for two hours using different methods.Such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Organic Inhibitor (4-4-ABPFM) were prepared throughout condensation of hydrochloric acid and reduction reaction using the reagent SnCl2, compound (4-4-APFM) involved a two reaction sequence of nucleophilic aromatic substitution and nitro group reduction, characterized by Fourier transform infrared spectroscopy (FT-IR). Electrochemical polarization test was also conducted to confirm the effectiveness of inhibition. Morphology of sample surfaces was respectively examined by scanning electron microscope (SEM). The result shows that the inhibition efficiency increases significantly up to 80% [4-(4-aminobenzoyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-ABPFM) and 73% [4-(4-aminophenyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-APFM). The optimum efficiency is obtained at (4-4-ABPFM) concentration of 100 ppm for expositing time of 2 hours at room temperature. The polarization curve shows the inhibitor behaves as a mixed inhibitor with the dominant cathodic inhibition. The adsorption of optimum concentration of both the inhibitor on the surface of mild steel in 1N HCl solution follows Langmuir adsorption isotherm. The Surface condition is improved due to the adsorption and then formation of thin layer film protection in the surface of the mild steel. The synthesized compounds show an appreciable corrosion inhibition property for mild steel in 1N HCl medium at room temperature which varies in the order: (4-4-APFM) < (4-4-ABPFM) compound.  

Publisher

International Journal of Pharma and Bio Sciences

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3