Inhibition of Food- Borne Pathogens by Pediococcus Pentosaceus DS1 and in Silico Analysis of the Pediocin Gene

Author:

Loying Surjya,Prakash Parasar DeepORCID,Nayak RahulORCID,Pratim kashyap ManashORCID,Saikia DevabrataORCID

Abstract

Global food safety is a huge concern, costing food industries billions of dollars every year. A healthy eating habit has become a myth due to an increase in food borne diseases. It is therefore necessary to avoid economic losses due to microbial spoilage and to preserve foods naturally in order to solve many of the current issues with food. Antimicrobial peptides isolated from bacteria have garnered considerable attention because of their potential benefits in extending the shelf-life of food products. Listeria monocytogenes and Staphylococcus aureus are two opportunistic pathogens which cause various food borne diseases. The aim of the study was to evaluate the production of antimicrobial compounds by the strain Pediococcus pentosaceus DS1 isolated from ekung, a fermented bamboo shoot product of North- East India. The main objectives of the study were to perform agar well diffusion assay for antimicrobial activity followed by characterization of the antimicrobial compound present in the cell free supernatant of the bacteria. It was observed that the antimicrobial peptide containing cell surface supernatant extracted from P. pentosaceus DS1 was able to inhibit Listeria monocytogenes (MTCC 839) and Staphylococcus aureus (MTCC 3160). PCR amplification led to the detection of a gene sequence in the genome of the strain P. pentosaceus DS1 which showed maximum similarity to pediocin, a 406 bp sequence. Pediocin belongs to a group of antimicrobial proteins known as bacteriocins which possess antimicrobial activities against food borne pathogens and spoilage bacteria. In- silico analysis indicated the presence of class IIa bacteriocin superfamily motif in the sequence. Class IIa bacteriocin producing bacteria isolated from fermented foods have a proven history of being used safely as antimicrobial agents in the food industry. Thus, this study reveals that P. pentosaceus DS1 has the potential to produce bacteriocinogenic agents that can be used safely to inhibit food pathogens  

Publisher

International Journal of Pharma and Bio Sciences

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3