POINT-TO-POINT (PTP) CONTROL PERFORMANCES OF AN UPPER LIMB ROBOTIC ARM

Author:

Md Ghazaly Mariam,Teo Ting Huan,A/L Regeev Vivek,A/L Vijayan Kartikesu,Shin Hong Chong,Che Amran Aliza,Abdullah Zulkeflee,Md Ali Mohd Amran

Abstract

The objective of this paper is to design a controller which is able to control the output angle for an upper limb of a robotic arm, for precision motion and high speed response.  The aim is to optimize the best controller for an upper limb robotic arm system for precision motion, in which improper motion will results in injuries/ fatality and loss of production in manufacturing system. In this research, a robotic arm prototype with a 1 degree-of-freedom (DOF) was designed and fabricated, in which the DC geared motor was implemented.  Studies are carried out based on previous research to investigate the suitable type of controller. PID controller and fuzzy logic controller are chosen and compared in terms of their performances such as the steady-state error, settling time, rise time and overshoot. The equipment’s used are Micro-Box 2000/2000C, Cytron DC geared motor, motor driver circuit. Micro-Box module acts as the interface between hardware component and MATLAB R2009a. Open-loop simulations are carried out to obtain the transfer function of the motor and substituted into the system for further simulation analysis. Simulation for the uncompensated system is carried out to observe the close-loop system characteristic without the controller. After that, the close-loop point-to-point (PTP) trajectory control for simulations & experiments are carried out for the compensated systems using PID controller based on the Ziegler-Nichols frequency response method. Analyses are made based on the results obtained and the best type of controller is chosen for achieving precise motion control for the upper limb robotic arm. In this paper, the PID controller shows better performances compared to the Fuzzy Logic controller (FLC) with the steady state error of less than 0.010 and settling time of 0.5s; for the input reference of 150  respectively. 

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D printing birdhouses with ceramic clay using a six-axis palletizing robot;Discover Applied Sciences;2024-08-30

2. Transforming a Six Axis Robotic Arm into a Ceramic 3D Printer;2024 IEEE 8th Energy Conference (ENERGYCON);2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3