LINEAR AND NONLINEAR ARX MODEL FOR INTELLIGENT PNEUMATIC ACTUATOR SYSTEMS

Author:

Sulaiman Siti Fatimah,Rahmat M. F.,Faudzi A. A. M.,Osman Khairuddin

Abstract

System modeling in describing the dynamic behavior of the system is very important and can be considered as a challenging problem in control systems engineering. This article presents the linear and nonlinear approaches using AutoRegressive with Exogenous Input (ARX) model structure for the modeling of position control of an Intelligent Pneumatic Actuator (IPA) system. The input and output data of the system were obtained from real-time experiment conducted while the linear and nonlinear mathematical models of the system were obtained using system identification (SI) technique. Best fit and Akaike’s criteria were used to validate the models. The results based on simulation reveals that nonlinear ARX (NARX) had the best performance for the modeling of position control of IPA system. The results show that nonlinear modeling is an effective way of analyzing and describing the dynamic behavior and characteristics of IPA system. This approach is also expected to be able to be applied to other systems. A future study exploring the execution of other model structures in demonstrating the position control of IPA system would be exceptionally intriguing.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TRIPLE NONLINEAR HYPERBOLIC PID WITH STATIC FRICTION COMPENSATION FOR PRECISE POSITIONING OF A SERVO PNEUMATIC ACTUATOR;IIUM Engineering Journal;2023-07-04

2. Evaluation of Nonlinear ARX System Identification Technique on Modeling Crosstalk;2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI);2022-08-01

3. Advanced Control Algorithm for FADEC Systems in the Next Generation of Turbofan Engines to Minimize Emission Levels;Mathematics;2022-05-23

4. Refinement of SOR method for the rational finite difference solution of first-order Fredholm integro-differential equations;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2020 (MATHTECH 2020): Sustainable Development of Mathematics & Mathematics in Sustainability Revolution;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3