MODELLING OF THE ELECTRICITY GENERATION FROM LIVING PLANTS

Author:

Ying Ying Choo,Dayou Jedol

Abstract

Electricity can be harvested from living plants by generating reaction between the plant and a pair of different metals. It has great potential in sustainable energy production because it offers a green approach to harvest energy from sources that are abundantly available. Previous investigation has shown that electrochemistry process is accountable for its mechanism of energy production. In this paper, the behavior of the ions flow in the electrodes-plant system is modelled and illustrated. For this purpose, energy harvesting system consists of Zn-Cu electrodes and aloe Vera was used where the electrodes were immersed in the aloe Vera leaf. It was hypothesized that during the energy harvesting process, oxidations of zinc atoms occur when an external load is connected between the two electrodes. For 72 hours of harvesting process, the zinc electrode experienced a mass loss of 3.2mg compared to electrochemistry prediction which is 0.0853mg when 1MΩ load was used. However, using a lower load resistor (1kΩ), the measured mass loss of the zinc increased to 6.7mg compared to the prediction which is 4.0452mg. This means that there is an increase of efficiency when a lower load resistance is used, which is 60.4% for 1kΩ, compared to 2.67% when using 1MΩ. This shows that the electrochemistry process is influenced by the load connected to the system. This finding improvises a better understanding on the energy production mechanism of the system.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BIOLOGICAL PROFILE OF LOCALLY GROWN BANANA CULTIVARS AND THE CAPABILITY OF THEIR PSEUDOSTEM SAP AS AN ALTERNATIVE ELECTROLYTE FOR WET CELL;International Journal of Earth & Environmental Sciences (IJEES);2023-09-13

2. The Power Density of PKL, Aloe Vera, Myrobalan, Lemon, and Tomato Electrochemical Cell—An Observation;Lecture Notes in Electrical Engineering;2023

3. Applications of Green Energy Storage Systems Using PKL Battery;Lecture Notes in Electrical Engineering;2023

4. A Review to Innovative a Green Electric Vehicle for Future;2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22);2022-04-29

5. Generación Eléctrica a Partir de la Fotosíntesis Natural; ¿Una Realidad Escalable?;Revista de Energías Renovables;2019-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3