Author:
Alshameri Badee,Bakar Ismail,Madun Aziman,Mohamad Edy Tonnizam
Abstract
One of the main geophysical tools (seismic tools) in the laboratory is the bender element. This tool can be used to measure some dynamic soil properties (e.g. shear and Young’s modulus). However, even if it relatively simple to use the bender element, inconsistent testing procedures can cause poor quality in the bender element data. One of the bender element procedure that always neglected is the alignment (different positions of bender element receiver to the transmitter in the vertical axis). The alignment effect was evaluated via changing the horizontal distance between transmitter and receiver starting from 0 to 110 mm for two sizes of the sample's thickness (i.e. 63.17 mm and 91.51 mm). Five methods were applied to calculate the travel times. Those methods were as the following: visually, first-peak, maximum-peak, CCexcel and CCGDS. In general, the experiments indicated uncertain results for both of the P-wave (primary wave) and S-wave (secondary wave) velocities at zone of Dr:D above 0.5:1 (where Dr is the horizontal distance of the receiver from the vertical axis and D is the thickness of the sample). On the other hand, both the visual and first-peak methods show the wave velocities results are higher than obtained from other methods. However, the ratio between the amplitude of transmitter signals to receiver amplitude signal was taken to calculate the damping-slope of the P-wave and S-wave. Thus the results from damping slope show steeply slope when the ratio of Dr:D is above 0.5:1 compare with gentle slope below ratio 0.5:1 at the sample with thickness equal to 91.51 mm, while there is no variation at a slope in sample with thickness equal to 63.17 mm.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献