Optimization for Onshore Wind Farm Cable: Connection Layout using ACO-AIA algorithm

Author:

Tifroute Mohamed,Bouzahir Hassane

Abstract

The wind farm layout optimization problem is similar to the classical mathematical problem of finding the Steiner Minimal Tree Problem (SMTP) of a weighted undirected graph. Due to the cable current-carrying capacity limitation, the cable sectional area should be carefully selected to meet the system operational requirement and this constraint should be considered during the SMTP formulation process. Hence, traditional SMTP algorithm cannot ensure a minimal cable investment layout. In this paper, a hybrid algorithm based on modified Ants Colony Optimization (ACO) and Artificial Immune Algorithm (AIA) for solving SMTP is introduced. Since the Steiner Tree Problem is NP-hard, we design an algorithm to construct high quality Steiner trees in a short time which is suitable for real time multicast routing in networks. After the breadth - first traversal of the minimal graph obtained by ACO, the terminal points are divided into different convex hull sets, and the full Steiner tree is structured from the convex hull sets partition. The Steiner points can then be vaccinated by AIA to get an optimal graph. The average optimization effect of AIA is shorter than the minimal graph obtained using ACO, and the performance of the algorithm is shown. We give an example of application in optimization for onshore wind farm Cable. The possibility of using different sectional area’s cable is also considered in this paper.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A heuristic method for solving the Steiner tree problem in graphs using network centralities;PLOS ONE;2024-06-06

2. Routing algorithm of real-time multicast communication based on Hadoop platform;2021 4th International Conference on Information Systems and Computer Aided Education;2021-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3