Comparison between VAR, GSTAR, FFNN-VAR and FFNN-GSTAR Models for Forecasting Oil Production

Author:

Suhartono Suhartono,Prastyo Dedy Dwi,Kuswanto Heri,Lee Muhammad Hisyam

Abstract

Monthly data about oil production at several drilling wells is an example of spatio-temporal data. The aim of this research is to propose nonlinear spatio-temporal model, i.e. Feedforward Neural Network - Vector Autoregressive (FFNN-VAR) and FFNN - Generalized Space-Time Autoregressive (FFNN-GSTAR), and compare their forecast accuracy to linear spatio-temporal model, i.e. VAR and GSTAR. These spatio-temporal models are proposed and applied for forecasting monthly oil production data at three drilling wells in East Java, Indonesia. There are 60 observations that be divided to two parts, i.e. the first 50 observations for training data and the last 10 observations for testing data. The results show that FFNN-GSTAR(11) and FFNN-VAR(1) as nonlinear spatio-temporal models tend to give more accurate forecast than VAR(1) and GSTAR(11) as linear spatio-temporal models. Moreover, further research about nonlinear spatio-temporal models based on neural networks and GSTAR is needed for developing new hybrid models that could improve the forecast accuracy.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3