PID CONTROLLER TUNING OPTIMIZATION USING GRADIENT DESCENT TECHNIQUE FOR AN ELECTRO-HYDRAULIC SERVO SYSTEM

Author:

Soon Chong Chee,Ghazali Rozaimi,Jaafar Hazriq Izzuan,Syed Hussien Sharifah Yuslinda

Abstract

The prominent performance of electro-hydraulic servo (EHS) system has received a positive admission in the industrial field. EHS system is well known to be disclosed to the parameter variations, disturbances and uncertainties which are affects by the changes in the operating conditions such as friction, internal and external leakage. The complexity and nonlinear characteristic of the EHS system leads to a great challenge in controller development and system modelling. The performance of the utilized controller can be improved in order to achieve its best capability. In this paper, the basic knowledge in optimization of the proportional-integral-derivative (PID) controller through Gradient Descent (GD) method was discussed. The PID parameters obtained through Ziegler-Nichols (ZN) tuning method has been optimized using the GD method via MATLAB/Simulink software. The findings illustrate significant improvement in the positioning tracking performance by applying the developed optimization technique. Therefore, the issues that were degraded the EHS system performance have been reduced.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing power consumption and position control in an electro-hydraulic system with cylinder bypass and NN-MPC;Scientific Reports;2024-01-23

2. Developing control systems to improve motion tracking of electro-hydraulic systems subjected to external load;International Journal of Dynamics and Control;2023-06-07

3. Gradient-Based Optimization for Anti-Windup PID Controls;2022 American Control Conference (ACC);2022-06-08

4. Adaptive control of hydraulic position servo system using output feedback;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2017-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3