COAL-FIRED POWER PLANT AIRBORNE PARTICLES IMPACT TOWARDS HUMAN HEALTH

Author:

Mohd Din Shamzani Affendy,Nik Yahya Nik Nurul-Hidayah,Hanapi Norsyamimi,Abdullah Alias

Abstract

The explosion of global warming and climate change occurs parallel to the raise rise of earth development. These phenomena happen due to the deterioration of atmospheric environment rooted from human activity. Ranges of air pollutants had been discovered. However, this research focuses on airborne particles in particular that comes from the emissions of coal. Recently, Malaysia electricity demand is raising and leads to the diversification of its sources towards the non-renewable energy. Manjung coal-fired power plant emission had been recognised as one of the potential anthropogenic sources of airborne particles. 8-hours airborne particles sampling had been done at Manjung Power Plant in March and July 2011 with 7-hole sampler at 2 L/min air flow and cyclone sampler at 2.2 L/min airflow. This research found that total inhalable dust exceeds 96.78 %; PM10 standard of 0.15mg/m3.This study also found that the percentage ratio of respirable towards total inhalable dust is 33.49%. This study also found that, as the temperature increases, the airborne particles concentration also increases. It is believed that the smaller offers particulate higher degree of illness. Thus, it is believed, the airborne particles dissemination from its sources is affected by the climate of an environment. Whichcan be deposited into deeper part of lung and provide adverse health impact towards the public or residence of surrounding coal-fired power plant neighbourhood area, generally and coal workers, specifically.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant;22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics;2016-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3