Author:
M. Abdullahi Auwalu,Mohamed Z.,Zainal Abidin M. S.,Akmeliawati R.,A. Bature Amiru
Abstract
This paper presents stability analysis and vibration control of a class of negative imaginary systems. A flexible manipulator that moves in a horizontal plane is considered and is modelled using the finite element method. The system with two poles at the origin is shown to possess negative imaginary properties. Subsequently, an integral resonant controller (IRC) which is a strictly negative imaginary controller is designed for the position and vibration control of the system. Using the IRC, the closed-loop system is observed to be internally stable and simuation results show that satisfactory hub angle response is achieved. Furthermore, vibration magnitudes at the resonance modes are suppressed by 48 dB.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献