A COMPARATIVE STUDY ON SPECTROGRAM AND S-TRANSFORM FOR BATTERIES PARAMETERS ESTIMATION

Author:

Mohamad Basir Muhammad Sufyan Safwan,Abdullah Abdul Rahim,Mohd Saad Norhashimah

Abstract

This research presents the analysis of battery charging and discharging signals using spectrogram, and S-transform techniques. The analysed batteries are lead acid (LA), nickel-metal hydride (Ni-MH), and lithium-ion (Li-ion). From the equivalent circuit model (ECM) simulated using MATLAB, the constant charging and discharging signals are presented, jointly, in time-frequency representation (TFR). From the TFR, the battery signal characteristics are determined from the estimated parameters of instantaneous means square voltage (VRMS (t)), instantaneous direct current voltage (VDC (t)), and instantaneous alternating current voltage (VAC (t)). Hence, an equation for battery remaining capacity as a function of estimated parameter of VAC (t) using curve fitting tool is presented. In developing a real-time automated battery parameters estimation system, the best time-frequency distribution (TFD) is chosen in terms of accuracy of the battery parameters, computational complexity in signal processing, and memory size. The advantages in high accuracy for battery parameters estimation, and low in memory size requirement makes the S-transform technique is selected to be the best TFD. Then, field testing is conducted for different cases, and the results show that the average mean absolute percentage error (MAPE) calculated is around 4%.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3