LIGHTWEIGHT ENCRYPTION FOR HIGH EFFICIENCY VIDEO CODING (HEVC)

Author:

A. Saleh Mohammed,Md. Tahir Nooritawati,Hashim Habibah

Abstract

Video data are being compressed and distributed using one of several coding standards, among which the most recent and popular is the High Efficiency Video Coding (HEVC) standard. The threatening growth of security attacks, on the other hand, has brought security and privacy concerns to the attention of governments and people as well. In the absence of a reliable security system, shared multimedia data used on the public networks such as the internet will continue to be exposed to different types of attacks, making end-to-end encryption for video data a necessity to protect their sensitive information. Therefore, providing a reliable video security technique that complies to and fulfills the requirements of HEVC is pertinent. In this paper, a fast selective encryption approach is developed to provide protection for video bitstreams of HEVC, which can be used in real-time video applications, with low computational overhead and maintaining the standard’s video bit rate. This approach employs the popular Advance Encryption Standard (AES) algorithm to encrypt selected elements in the horizontal intra prediction modes. Experimental evaluations confirm the provision of adequate security level of video information, with no bitrate increase, no increase in computational delay and no additional impact on the compression performance when compared to non-secure techniques, while also achieving a satisfactory trade-off between the encryption reliability, flexibility, and computational complexity. The security level of this method was found to be strongly secure against plaintext and brute force attacks.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HEVC Video Encryption Algorithm Based on Integer Dynamic Coupling Tent Mapping;Journal of Advanced Computational Intelligence and Intelligent Informatics;2020-05-20

2. Reduction of intra-coding time for HEVC based on temporary direction map;Journal of Real-Time Image Processing;2018-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3