HELICAL TWISTED EFFECT OF SPIRAL PIPE IN GENERATING SWIRL FLOW FOR COAL SLURRIES CONVEYANCE

Author:

Yanuar Yanuar,T. Waskito Kurniawan,Mau Sealtial,Wulandari Winda,P. Sari Sri

Abstract

This paper proposes methods to reduce energy consumption for the transportation of coal slurries. Spiral pipe is one of the methods that can improve drag reduction at certain velocity as well as prevent decomposition at the pipe bottom and generate homogenous particles distribution. The objective is to investigate the influence of using spiral pipe to pressure drop and homogeneity of coal slurries. The pipe angles (β) are 140, 230, 400 and 560, the pipe test loop is set up with entrance length 3000 mm. Pressure Transducer and pitot tube are used in the measurements. Percentage of the particle concentrations are varied by weight of 30 %, 40 % and 50 %. The helical angle gives significant effect to eliminate decomposition at the pipe bottom. At CW 50 %, homogeneity of the slurries can reach around 96 % at helical angle 230, It means the mixture between solid material and water more uniform, using circular pipe the homogeneity is only 74 %. Weight concentration of the solid particles and Reynolds number gives significant effect to the drag reduction. Flow of CW =50 % slurry at Re~5x104 through 23° spiral pipe can increase drag reduction by about 30%. Velocity profiles were obtained from numerical CFD simulation validated experimental results make clear the flow characteristics.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of active and passive controls to prove the degradation time;AIP Conference Proceedings;2023

2. Numerical Study on the Impact of Spiral Tortuous Hole on Cuttings Removal in Horizontal Wells;SPE Drilling & Completion;2021-11-01

3. Rheological behavior and drag reduction characteristics of ice slurry flow in spiral pipes;Thermal Science and Engineering Progress;2020-12

4. Numerical analysis of surface roughness effect on promoting drag reduction in crude palm oil flow through pentagon spiral pipe;AIP Conference Proceedings;2020

5. Rheological characteristics of non-Newtonian mud slurry flow using spiral pipes;RECENT PROGRESS ON: MECHANICAL, INFRASTRUCTURE AND INDUSTRIAL ENGINEERING: Proceedings of International Symposium on Advances in Mechanical Engineering (ISAME): Quality in Research 2019;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3