Detecting SIM Box Fraud by Using Support Vector Machine and Artificial Neural Network

Author:

Sallehuddin Roselina,Ibrahim Subariah,Mohd Zain Azlan,Hussein Elmi Abdikarim

Abstract

Fraud in communication has been increasing dramatically due to the new modern technologies and the global superhighways of communication, resulting in loss of revenues and quality of service in telecommunication providers especially in Africa and Asia.  One of the dominant types of fraud is SIM box bypass fraud whereby SIM cards are used to channel national and multinational calls away from mobile operators and deliver as local calls. Therefore it is important to find techniques that can detect this type of fraud efficiently. In this paper, two classification techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) were developed to detect this type of fraud.   The classification uses nine selected features of data extracted from Customer Database Record.  The performance of ANN is compared with SVM to find which model gives the best performance. From the experiments, it is found that SVM model gives higher accuracy compared to ANN by giving the classification accuracy of 99.06% compared with ANN model, 98.71% accuracy. Besides, better accuracy performance, SVM also requires less computational time compared to ANN since it takes lesser amount of time in model building and training.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIM Box Fraud Detection by Deep Learning System with ICA And Beta Divergence;International Conference on Information Systems Development;2024-09-09

2. Battle of Wits: To What Extent Can Fraudsters Disguise Their Tracks in International bypass Fraud?;Proceedings of the 19th ACM Asia Conference on Computer and Communications Security;2024-07

3. Detection of DDoS Attacks Using Variational Autoencoder-Based Deep Neural Network;Privacy Preservation and Secured Data Storage in Cloud Computing;2023-10-25

4. LSTM-based generation of cellular network traffic;2023 IEEE Wireless Communications and Networking Conference (WCNC);2023-03

5. Machine Learning-Based Approach for Identification of SIM Box Bypass Fraud in a Telecom Network Based on CDR Analysis: Case of a Fixed and Mobile Operator in Cameroon;Journal of Computer and Communications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3