Author:
Abdullah S. S.,Allwright J. C.
Abstract
Kertas kerja ini membentangkan satu kaedah Pembelajaran Aktif yang baru untuk melatih Jaringan Saraf Buatan ( JSB) yang berasaskan Fungsi Asas Jejarian (FAJ) apabila JSB tersebut digunakan untuk menyelesaikan masalah Penurunan Model. Kaedah baru ini berasaskan andaian bahawa data yang diperlukan, y, pada input x, berada dalam sebuah set di mana F(x) boleh dibentuk menggunakan pengalaman atau pengetahuan awal tentang satu masalah. Kaedah baru ini akan mendapatkan lokasi data baru dengan meminimumkan ralat kes paling buruk antara keluaran JSB dengan had data seperti yang telah ditakrifkan oleh set F(x). Adalah didapati bahawa kaedah yang dicadangkan ini mampu memberikan kedudukan data baru yang baik pada kes-kes tertentu, berbanding dengan data yang diperolehi daripada kaedah sedia ada. Hasil kajian perbandingan antara kaedah yang dicadangkan dengan kaedah yang sedia ada juga disertakan dalam kertas kerja ini yang menunjukkan bahawa kaedah pembelajaran aktif yang dicadangkan merupakan satu penambahan yang baik kepada kaedah pembelajaran aktif yang sedia ada seperti kaedah reka bentuk maksimum minimum atau kaedah cross validation.
Kata kunci: Jaringan saraf buatan, fungsi asas jejarian, penurunan model, kaedah pembelajaran aktif, reka bentuk eksperimen, metamodel
This paper presents a new Active Learning algorithm to train Radial Basis Function (RBF) Artificial Neural Networks (ANN) for model reduction problems. The new approach is based on the assumption that the unobserved training data y at input x, lies within a set where F(x) is known from experience or past simulations. The new approach finds the location of the new sample such that the worst case error between the output of the resulting RBF ANN and the bounds of the unknown data as specified by F(x) is minimized. This paper illustrates the new approach for the case when . It was found that it is possible to find a good location for the new data sample by using the suggested approach in certain cases. A comparative study was also done indicating that the new experiment design approach is a good complement to the existing ones such as cross validation design and maximum minimum design.
Key words: Artificial neural networks, radial basis functions, model reduction, active learning, experiment design, metamodeling
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献