Abstract
Aquatic plants are known to provide flow resistance and impact the turbulence intensity and turbulent kinetic energy within the vegetated area. This paper further investigates the impact of both vegetation and dunes in open channels to the hydrodynamic characteristic of flow. Emergent vegetations were built from rigid wooden rod in staggered arrangement with 0.5% vegetations density were applied in the flume. Experiments were conducted with flow rate of 0.0058 m3/s throughout the experiments. Dunes were constructed from gravel of 2 mm size diameter in the shape of standing waves of three different lee slope angles of 3⁰, 6⁰ and 9⁰. Flow velocities are measured by using a velocimeter to get the raw data for the three-dimensional flow velocity in the x, y, and z directions. The velocities data were then analysed to calculate the mean velocity, turbulence intensity and turbulent kinetic energy. Experimental results showed that, for all three lee slope angles presented higher flow velocity in the vegetated channel compared to the non-vegetated channel. It was also found that greater lee slope angle dunes generate higher velocity for both channels with and without vegetation. Higher turbulence intensity can be found near the bed area and greater turbulence intensity also shown in the positive slope of a dunes compared to negative slope area. Higher turbulent kinetic energy values were recorded within the vegetated channel compared to the non-vegetated channels.