MODELLING AND INTEGRATING OF EXPERIMENTAL ANALYSIS FOR PREDICTING THE PARAMETERS OF KENAF FIBRE-REINFORCED CONCRETE BEAM-COLUMN JOINT

Author:

Ayeni Ige Samuel,Jamaludin Yatim Mohamad,Abdul Shukor Lim Nor Hasanah

Abstract

To lessen the environmental impact of infrastructure projects, the construction sector has recently demonstrated a growing interest in sustainable materials. Kenaf fibre-reinforced concrete (KFRC), which has improved mechanical qualities and biodegradability, has emerged as a possible eco-friendly substitute. The intricate interactions between material composition, geometrical factors, and load-bearing capacities make it difficult to optimise the design of structural parameters of KFRC beam-column joints. The beam-column joints used in this study were designed based on ACI 318-19 shear criteria. This study suggests a novel method for precisely predicting the parameters of kenaf fibre-reinforced concrete beam-column (KFRC-BC) joints by combining machine learning modelling and experimental investigation. Experimental data are carefully documented to establish the reality, including load-displacement responses and beam-column joint parameters such as shear, stiffness, ductility, crack load, energy absorption, and ultimate load. These data were used in the modelling through GeneXproTools 5.0 (GEP) and an empirical relationship with mathematical expressions has been proposed for each joint parameter. R2 statistical analysis is used to evaluate the model’s efficacy. In addition, it has been demonstrated by varying intensity and correlation that deep learning may be used to determine the precise concrete structure parameters in civil engineering without the need for experimental research. The shear spacing could be increased by 25% to 50%. Concrete strength influences all these characteristics. 

Publisher

Penerbit UTM Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3