A THERMAL BEHAVIOUR STUDY OF NATURAL FIBER-REINFORCED POLYMER COMPOSITE/HONEYCOMB CORE SANDWICH PANELS

Author:

Zulkarnain Muhammad,M. Sobron Y Lubis,,Insdrawaty Mohamad Irfan,Azman Mohamad Izmul Farees,Azmi Muhamad Izwan Aiman,Zainol Mohd Faez

Abstract

The unique honeycomb structure has provided good modulus with a lightweight material, especially in aerospace and vehicle applications.  Realizing that the thermal analysis of natural fiber honeycomb sandwiches was still lacking in observation, the research needs to investigate thermal transfer characteristics to promote engineering demand. The objective of this research was to investigate honeycomb sandwiches' thermal behaviour by implementing local natural fibers of coconut, oil palm, and sugar cane for sheet plate structure through experimental and numerical analysis. The natural fiber was varied by weight content with the ratio of composite given in a range of 0%wt. - 8%wt.  The results have demonstrated that the face sheet plate was paramount part to absorb thermal flow. The study displayed the low thermal conductivity of the face sheet will counter significantly the heat transfer of the honeycomb structure. The experimental investigation found that the coconut fiber successfully performs as an insulator in a honeycomb sandwich which reached 6.78 W.m-1K-1 of thermal conductivity which was an 85.86% improvement as an insulator. While palm oil and sugar cane presented at 11.12 W.m-1K-1 and 10.59 W.m-1K-1, it was slightly higher compared to the coconut. In the numerical investigation, fiber distribution development was successfully performed in a honeycomb sandwich sheet plate composite. The thermal conductivity showed a difference from the experimental, where the higher thermal resistance was shown by palm oil and sugar cane at 8.22 W.m-1K-1 and 8.16 W.m-1K-1, respectively. 

Publisher

Penerbit UTM Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3