SYNTHETIC MULTIVARIATE DATA GENERATION PROCEDURE WITH VARIOUS OUTLIER SCENARIOS USING R PROGRAMMING LANGUAGE

Author:

Syed Abd Mutalib Sharifah SakinahORCID,Satari Siti Zanariah,Wan Yusoff Wan Nur Syahidah

Abstract

A synthetic data generation procedure is a procedure to generate data from either a statistical or mathematical model. The data generation procedure has been used in simulation studies to compare statistical performance methods or propose a new statistical method with a specific distribution. A synthetic multivariate data generation procedure with various outlier scenarios using R is formulated in this study. An outlier generating model is used to generate multivariate data that contains outliers. Data generation procedures for various outlier scenarios by using R are explained. Three outlier scenarios are produced, and graphical representations using 3D scatterplot and Chernoff faces for these outlier scenarios are shown. The graphical representation shows that as the distance between outliers and inliers by shifting the mean, increases in Outlier Scenario 1, the outliers and inliers are completely separated. The same pattern can also be seen when the distance between outliers and inliers, by shifting the covariance, increase in Outlier Scenario 2. For Outlier Scenario 3, when both values  and  increase, the separation of outliers and inliers are more apparent. The data generation procedure in this study will be continually used in other applications, such as identifying outliers by using the clustering method.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3