KEYWORD SPOTTING SYSTEM WITH NANO 33 BLE SENSE USING EMBEDDED MACHINE LEARNING APPROACH

Author:

Abbas Nurul AtikahORCID,Ahmad Mohd Ridzuan

Abstract

Due to the obvious advancement of artificial intelligence, keyword spotting has become a fast-growing technology that was first launched a few years ago by hidden Markov models. Keyword spotting is the technique of finding terms that have been pre-programmed into a machine learning model. However, because the keyword spotting system model will be installed on a small and resource-constrained device, it must be minimal in size. It is difficult to maintain accuracy and performance when minimizing the model size. We suggested in this paper to develop a TinyML model that responds to voice commands by detecting words that are utilized in a cascade architecture to start or control a program. The keyword detection machine learning model was built, trained, and tested using the edge impulse development platform. The technique follows the model-building workflow, which includes data collection, preprocessing, training, testing, and deployment. 'On,' 'Off,' noise, and unknown databases were obtained from the Google speech command database V1 and applied for training and testing. The MFCC was used to extract features and CNN was used to generate the model, which was then optimized and deployed on the microcontroller. The model's evaluation represents an accuracy of 84.51% based on the datasets. Finally, the KWS was successfully implemented and assessed on Arduino Nano 33 BLE Sense for two studies in terms of accuracy at three different times and by six different persons.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Firefighting Early Warning and Evacuation System Based on Edge Computing with Led Dynamic Indicator Devices;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3