Abstract
Short-duration rainfall characteristics in the form of certain intensity, time, and spatial distribution become valuable contribution for lahar flow disaster mitigation in a mountainous region. Due to mitigation purpose, such information can be provided through the rainfall nowcasting process. One of the promising rainfall nowcasting applications is the extrapolation-based method. Rain motion tracking is a crucial part of the rainfall nowcasting based on this method. This paper discusses the application of Pyramid Lucas-Kanade Optical Flow (PLKOF) method on the rain motion tracking analysis using 150x150m resolution radar image. The study of rain motion tracking is carried out using 112 successive rainfall images with 10-minutes time interval originating from Mt. Merapi X-band multiparameter radar. The rainfall movement patterns in short duration are presented in the displacement vector (u,v) images and scatter diagrams of rain motions at x- and y-directions. From the simulations, it was found that the average displacement of rain motions in the Mt. Merapi region is 9 pixels (8.3 km/h) with the dominant direction is northeast. The results show that PLKOF is relatively good at detecting small displacements, yet unable to identify the occurrence of rain growth and decay properly. The ability of PLKOF method in predicting the position of rain cell displacement is satisfied as indicated by the POD, CSI, and FAR indexes.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A High Wind Associated with Bow Echo Mesovortex over Cimenyan, Indonesia;2023-10-10
2. Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements, and Challenges;IEEE Systems, Man, and Cybernetics Magazine;2023-10
3. Lightweight Jitter Suppression Algorithm for Medical Endoscopes;Scientific Journal of Technology;2023-07-22
4. A Study on Fire Detection Using Deep Learning and Image Filtering Based on Characteristics of Flame and Smoke;Journal of Electrical Engineering & Technology;2023-04-08
5. A Precipitation Prediction Method Based on UNet and Attention Mechanism;2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2022-09-12