DEVELOPMENT OF SMART CAMPUS APPLICATIONS BASED ON WIRELESS TECHNOLOGIES USING OPEN-SOURCE PLATFORMS

Author:

Abdull Rashid Nur FarahinORCID,Abu-Samah Asma'ORCID,Mohd Noh Aishah,Azam Noor Zaim Syafiq,Wahid Nur Najihah,Chiang Chee Qin,Alobaidy HaiderORCID,Abdullah Nor Fadzilah,Abdul Hamid SawalORCID,Nordin RosdiadeeORCID

Abstract

Malaysian National Center for Education estimates that students' enrolments will increase to 17.2 million by 2028. The conventional way of managing things around campus work can be  improved by applying the smart campus concept. This study showcases the potential smart campus applications with different wireless IoT technologies and their application; LoRa for Internet of Bicycle (IoB), Sigfox for water quality monitoring, IEEE 801.11p for campus active safety application, and NB-IoT for remote mangrove conservation. The prototypes consist of various sensors and online dashboards to demonstrate the open-source IoT ecosystem. For IoB, a 0.5 km radius centered at LoRa gateway’s location, proved reliable for real-time e-bicycles location monitoring. It offers locking system security to avoid bicycles steal. The SigFox-based water quality monitoring system received signal performance is adequate (RSSI -80 to -90 dBm) with a  tower location approximately 3 km from the lake area. For active safety application based on IEEE 801.11p, communication of braking force, car speed, and position of cars ahead of an obstacle make this application feasible to improve road safety around campus, with the real implementation expected to be achieved in the next five to ten years. Lastly, the application of remote mangrove conservation monitoring using NB-IoT on LTE mobile network from Celcom as an independent wireless platform. It allows researchers and students from the university to use this application for their research on sustainable conservation at remote mangrove sites worldwide. The results have shown that all the wireless IoT is promising for future smart campus deployment.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Downlink Power Budget and Bit Error Analysis for LoRa-Based Sensor Node-to-Satellite Link in the Industrial, Scientific, and Medical Frequency Bands;Signals and Communication Technology;2024

2. Analysis of LTE Performance of V2V Communications on Indonesia Toll Road;2023 6th International Conference on Information and Communications Technology (ICOIACT);2023-11-10

3. Vehicle Black Box Monitoring based ThingSpeak with Long Range Technology;2022 2nd International Conference on Advances in Engineering Science and Technology (AEST);2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3