EFFECT OF PRINT BED’S HEAT FLOW ON CURLING AND SURFACE ROUGHNESS OF FDM-PRINTED ABS SAMPLE

Author:

Lau Kok-TeeORCID,Mohammad Taha MasturaORCID,Abdul Kudus Syahibudil Ikhwan,Chung See Ern

Abstract

The optimization of printing parameters, in particular the print bed aspect, is essential for the further improvement of print quality. This paper investigates the effect of the print bed’s heat flow and surface properties (i.e. materials and surface roughness) on the curling defect and surface roughness of the ABS-based dog bone designed print. The print bed temperature is varied, and the corresponding heat flow is measured using a portable heat flow meter. The maximum z deflection (curling) of the print is characterized using Geomagic Control X metrology software by measuring the dimension deviation of the 3D scanned print compared with the CAD drawing. The surface roughness in terms of the Ra and Rz of the print are obtained by a stylus-based contact profilometer. The measured heat flow data have a positive linear correlation with the print bed temperature, which is confirmed by our theoretical calculation. The surface roughness of the print is higher when printed on the zinc plate-overlaid print bed, compared with the standard (unmodified) print bed. Furthermore, the applied heat flow has a large positive correlation with the print’s roughness but no correlation with the maximum z deflection. The roughness and z-deflection behaviour are attributed to the curling at the grip section of the print, resulting in a shorter interaction time with the print bed surface compared with the gage section that remains in physical contact throughout the 3D printing.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3