ANALYSIS OF GLOBAL AND LOCAL MAXIMUM POWER POINTS IN PV ARRAYS UNDER PARTIAL SHADING CONDITION

Author:

Mulyo Raharjo BambangORCID

Abstract

Partial shading (PS) has a significant impact on the decrease in efficiency of photovoltaic (PV) array and performance of maximum power point tracking (MPPT) that must be addressed. We conduct an analysis and evaluation of local maximum power point (LMPP) in terms of quantity, and global maximum power point (GMPP) in terms of magnitude and diversity. Simulation is carried out using single diode ideal model and nine generic PS patterns that are specifically designed to bring up the substantial characteristics of the LMPP and GMPP and applied to series-parallel (SP) and total cross-tied (TCT) configurations. The SP configuration has LMPP with two, three, and four peaks, appearing three times each. The TCT configuration has two peaks that appear six times, three peaks that appear once, and four peaks that appear twice. The SP configuration experiences power losses ranging from 56% to 72%, while the TCT configuration has power losses ranging from 52% to 64%. The SP configuration generates a maximum voltage of 76.64 volts and a minimum of 39.20 volts, while the TCT configuration generates a maximum voltage of 77.62 volts and a minimum of 58.21 volts. With a smaller number of LMPP, a larger magnitude of GMPP parameters, and lower diversity, TCT exhibits better characteristics and performance compared to SP.

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3