ADAPTIVE MODEL PREDICTIVE CONTROLLER FOR TRAJECTORY TRACKING AND OBSTACLE AVOIDANCE ON AUTONOMOUS VEHICLE

Author:

Ali Leman ZulkarnainORCID,Mohammad Ariff Mohd HattaORCID,Zamzuri Hairi,Abdul Rahman Mohd AziziORCID,Mazlan Saiful Amri,Bahiuddin IrfanORCID,Yakub Fitri

Abstract

Advancement in active steering technology is vital as the autonomous vehicle technology is preparing to enter the commercialization phase. Accurate trajectory tracking and collision free motion have become an active topic being discussed in research field recently. During an emergency obstacle avoidance manoeuvre conditions, tyre force saturation can easily happened when availability of lateral tyre forces is limited by the law of tyre friction circle. This greatly affects the trajectory tracking performance of the vehicle. Existing controllers such as generic model predictive controller (MPC) and geometric controller (Stanley) need a proper gain tuning to cope with this condition. This is due to the control gains were determined by trial and error basis via linearization process at a certain targeted speed. Therefore, the control performance is limited considering the presence of speed variation as well as extreme manoeuvre trajectory. This paper proposes an Adaptive Model Predictive Controller (MPC) controller to solve aforementioned issues.  First, optimized weighting gains for the steering control were obtained using PSO algorithm. The optimised weighting gains were then scheduled into the proposed Model predictive Controller via a look-up table strategy. In this work, the proposed adaptive MPC controller was designed by using the linearization of the 7 degree-of-freedom (DOF) non-linear vehicle model. Here, the linearized model for controller design was update based on the instantaneous longitudinal speed of the vehicle system plant. 

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3