FUSION SPARSE AND SHAPING REWARD FUNCTION IN SOFT ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR MOBILE ROBOT NAVIGATION

Author:

Abu Bakar Mohamad HafizORCID,Shamsudin Abu UbaidahORCID,Soomro Zubair AdilORCID,Tadokoro Satoshi,Salaan C. J.

Abstract

Nowadays, the advancement in autonomous robots is the latest influenced by the development of a world surrounded by new technologies. Deep Reinforcement Learning (DRL) allows systems to operate automatically, so the robot will learn the next movement based on the interaction with the environment. Moreover, since robots require continuous action, Soft Actor Critic Deep Reinforcement Learning (SAC DRL) is considered the latest DRL approach solution. SAC is used because its ability to control continuous action to produce more accurate movements. SAC fundamental is robust against unpredictability, but some weaknesses have been identified, particularly in the exploration process for accuracy learning with faster maturity. To address this issue, the study identified a solution using a reward function appropriate for the system to guide in the learning process. This research proposes several types of reward functions based on sparse and shaping reward in SAC method to investigate the effectiveness of mobile robot learning. Finally, the experiment shows that using fusion sparse and shaping rewards in the SAC DRL successfully navigates to the target position and can also increase accuracy based on the average error result of 4.99%.

Publisher

Penerbit UTM Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3