TITANIUM DIOXIDE SOL-GEL/ZINC OXIDE POWDER-COATED CLAY BEADS IN PHOTOCATALYTIC REACTOR

Author:

Krishnan ThurgadewiORCID,Con Nie Ng,Wan Abdullah Wan Rafizah,Awang Mohamad,Wan Mansor Wan SalidaORCID

Abstract

Catalyst Immobilization methods are important for providing better recovery of catalyst in photocatalytic treatment. The aim is to characterize and evaluate the photocatalytic performance of TiO2/ZnO-coated clay beads. The titanium dioxide/zinc oxide (TiO2/ZnO)-coated clay beads were prepared via the sol-gel process. Various ZnO powder ratios gave different TiO2/ZnO composites sol. Four layers of TiO2/ZnO sol were coated on clay beads and dried in the oven at 100°C for 30 min. The coated clay beads were calcined at 500°C for one hour for every two layers. Characterization of coated clay beads was done using a scanning electron microscope and energy dispersive spectroscopy. The increased surface area on small agglomeration and optimum loading of ZnO (5 g) resulted in the highest degradation efficiency recorded at 86.57%. An effective catalyst immobilization achieved a good recycling performance on clay beads. Degradation rate data were presented by pseudo-first-order kinetics. It was observed that the average degradation rate for TiO2/5 g ZnO is 0.00836 min–1. The actual results in this work can be applied as a guideline for the preparation of TiO2/ZnO-coated clay beads with high photocatalytic performance.  

Publisher

Penerbit UTM Press

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3