CHARACTERIZATION OF REDUCED GRAPHENE OXIDE/ACTIVATED CARBON-BASED ELECTRODE CONTAINING MIXING CMC-SBR BINDER AND APPLICATION IN SUPERCAPACITOR

Author:

Azam Mohd Asyadi,Aziz M. F.,Adaham T. A. T.,Safie N. E.,Mupit M.,Takasaki Akito

Abstract

In this work, variation of mixing a combination of carboxymethylcellulose (CMC) and styrene-butadiene rubber (SBR) as both used as the binder in the electrode has been studied. The purpose of using CMC-SBR as the binder in the electrode is to achieve a high supercapacitor performance. The electrode preparation has been carried out by mixing the reduced graphene oxide (rGO) and activated carbon (AC) in a blender. The binder preparation started by dissolving the CMC and SBR in the deionized water using a clean glass container. Then, rGO/AC has been stirred with the CMC-SBR for 60 minutes until a homogenous slurry formed. All electrodes have been characterized with Raman spectroscopy. The electrochemical tests such as cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) for all electrode compositions were performed. The electrode with 4:6 (in weight percentage) of CMC-SBR shows the highest specific capacitance (Csp) of 59.65 F g-1 (CV scan rate of 1 mV s-1) and 12.82 F g-1 from GCD test. This confirmed that the electrode containing 4 wt.% of CMC and 6 wt.% of SBR resulting in the best composition, which is reliable and practical for the supercapacitor application.

Publisher

Penerbit UTM Press

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preface;ACS Symposium Series;2024-06-17

2. Editors’ Biographies;ACS Symposium Series;2024-06-17

3. Subject Index;ACS Symposium Series;2024-06-17

4. Title, Copyright, Foreword;ACS Symposium Series;2024-06-17

5. A Confluence of Emerging Technologies Like IoT, Edge & Cloud Computing, Blockchain, Industry 4.0 & 5.0, AI & ML toward the Realization of Eco-Friendly Supercapacitors;ACS Symposium Series;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3