MEASUREMENT OF RICE MOISTURE CONTENT BASED ON QUANTITATIVE ANALYSIS FROM RADIO TOMOGRAPHY IMAGES

Author:

Mohd Ramli Nurul AmiraORCID,Rahiman Mohd Hafiz FazalulORCID,Abdul Rahim Ruzairi,Kamarudin Latifah Munirah,Mohamed Latifah,Zakaria Ammar,Saeed Moqbel Abdullah MohammedORCID

Abstract

Inefficient storage of paddy and rice grains can lead to grain deterioration, resulting in post-harvest losses ranging from 10% to 30%. The quality of grains cannot be improved throughout the storage period. Therefore, following the mechanisation of agricultural industries, air dryers have been developed to control the crops’ moisture level by blowing ambient or heated air into the silo to improve the aeration and allow the grains to be preserved with minimal loss of quality until the appropriate time for managing and marketing processes. However, the conventional sampling method used to measure the moisture level is inefficient because it is very localised and only represents part of the moisture distribution inside the bulk grains. Additionally, incorporating advanced technologies can be a significant cost limitation for small-scale industries. Thus, to address the issue, this research study developed a radio tomographic imaging (RTI) system in a silo-scale prototype using 20 sensor nodes operating at 2.4 GHz to localise and monitor the moisture level constructively. The RTI system reconstructs the cross-sectional images across the rice silo by measuring radio frequency attenuation, in terms of received signal strength (RSS) quality, caused by the rice moisture phantoms within the wireless sensor network (WSN) area. A total of five phantoms’ profiles having a percentage of moisture content (MC) of 15%, 20% and 25% were reconstructed using four image reconstruction algorithms, Linear Back Projection (LBP), Filtered Back Projection (FBP), Newton’s One-step Error Reconstruction (NOSER) and Tikhonov Regularisation. 

Publisher

Penerbit UTM Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3