Fault Detection and Monitoring Using Multiscale Principal Component Analysis at a Sewage Treatment Plant

Author:

Mirin Siti Nur Suhaila,Abdul Wahab Norhaliza

Abstract

Safety, environmental regulations, the cost of maintenance and the operation of sewage treatment plants are some of the many reasons researchers have carried out countless research studies into fault detection and monitoring over the years. Conventional principal component analysis (PCA) in particular has been used in the field of fault detection, where the technique is able to separate useful information from multivariate data. However, conventional PCA can only be used on data that has a constant mean, which is rare in sewage treatment plants. Consequently, the success of combining wavelet and conventional PCA has attracted many researchers to apply it to fault detection where the wavelet is capable of separating data into several time scales. The separated data will be approximated to a constant mean. In addition, the conventional PCA only captures the correlation across the data, unlike multiscale PCA (MSPCA) which captures the correlation within the data and across the data. Therefore, in this work, MSPCA is introduced to improve the performance of PCA in fault detection. The objective of this paper is to reduce false alarms that exist in PCA fault detection and monitoring. Data from the Bunus sewage treatment plant (Bunus STP) is used and analysed using conventional PCA with Hotelling’s T2 and the squared prediction error (SPE). MSPCA with Hotelling’s T2 and SPE is used to improve the efficiency of fault detection and monitoring performance in conventional PCA. Therefore, MSPCA is successful in improving conventional PCA in fault detection and monitoring by reducing false alarms. 

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3