SEA LEVEL ANOMALY ASSESSMENT OF SARAL/ALTIKA MISSION USING HIGH AND LOW RESOLUTION DATA

Author:

Sheng How Goh,Md Din Ami Hassan,Hamden Mohammad Hanif,Uti Mat Nizam,Mohd Adzmi Nadia Hartini

Abstract

Peninsular Malaysia is located at the focal point of Sunda Shelf, encompassed by the South China Sea to the East and by Andaman Sea at Indian Ocean in the west that causes various phenomena relevant to sea level along Malaysian coast. When the monsoons strike, the effect of wind and other factors will change the variability of Sea Level Anomaly (SLA) along coastal Malaysia. Traditionally, sea level change is observed using tide gauge installed along Malaysian coastal area. However, the data obtained is limited to the tide gauge station area, the sea level data for the deep sea cannot be obtained and there is no long-term record of observation. Therefore, satellite altimeter is used as a new alternative which enables sea level data to be obtained from space observation and to monitor SLA via SARAL/AltiKa which available since 2013, thus complementing the tide gauge. The aim of this study is to derive SLA parameter from high and low resolution of satellite altimetry data. This study involved the acquisition of SLA data by using RADS and PEACHI (AVISO) database system from satellite mission SARAL/AltiKa. Sequentially, SLA data has been analysed and evaluated based on tide gauge data provided by using UHSLC system. Comparison between the high resolution (PEACHI) and low resolution (RADS) data has been made to evaluate the density of altimetry data in term of distance to coast. As a result, high resolution (PEACHI) data are more accurate for coastal application with root mean square error (RMSE) of ±0.14 metre level. The analysis shows that the footprint of high resolution altimetry data is denser than the low resolution altimetry data. Data from distance to coast for PEACHI achieved a satisfactory standard deviation of residual, which is ranged between 0cm to 1.04cm as compared to altimetry RADS which is ranged 0.34cm to 12.57cm. The results can be used by various agencies in planning and developing Malaysian coastal areas as well as in assisting the development of community economies such as fishery and tourism activities.

Publisher

Penerbit UTM Press

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3